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We study two nonequilibrium work fluctuation theorems, the Crooks theorem and the Jarzynski equality, for
a test system coupled to a spatially extended heat reservoir whose degrees of freedom are explicitly modeled.
The sufficient conditions for the validity of the theorems are discussed in detail and compared to the case of
classical Hamiltonian dynamics. When the conditions are met the fluctuation theorems are shown to hold
despite the fact that the immediate vicinity of the test system goes out of equilibrium during an irreversible
process. We also study the effect of the coupling to the heat reservoir on the convergence of �exp�−�W�� to its
theoretical mean value, where W is the work done on the test system and � is the inverse temperature. It is
shown that the larger the local heating, the slower the convergence.
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I. INTRODUCTION

The recently discovered nonequilibrium fluctuation theo-
rems deal with large deviations and symmetries of quantities
�1,2� such as entropy production �3,4�, heat exchange �5,6�,
or work performed �7,8� during an irreversible process. Two
examples which have received much attention are the Jarzyn-
ski equality and the Crooks theorem. In the Jarzynski equal-
ity one considers a test system �TS� which is initially in
equilibrium with a heat reservoir at temperature T. The test
system is then driven to another state by varying an external
parameter � over a finite time interval 0� t�� using a fixed
protocol ��t�. In this process, a history dependent work W is
performed. The Jarzynski equality �7� states that the average
of e−�W over histories satisfies

�e−�W� = e−��FTS, �1�

where �=1 /T is the temperature of the system when it is in
equilibrium and �FTS=FTS�B�−FTS�A� is the free energy
difference between the equilibrium states A and B of the test
system at the initial and final values of �, respectively.

The Crooks theorem is a statement about the probability
distribution of work performed in an irreversible process �8�.
As for the Jarzynski equality, one considers a test system in
contact with a heat reservoir at temperature T. Initially in an
equilibrium state A with �=��0�, the test system is driven,
during the time interval �0,��, by the protocol ��t� �the “for-
ward process”�. During this process, varying amounts of
work may be performed, depending on the trajectory the sys-
tem takes in state space as � is varied; the likelihood that
work W is performed is specified by a probability distribu-
tion PF�W�. One then considers the reverse process in which
the system starts in the equilibrium state B with �=����, and

is driven by the time-reversed protocol �̃�t�����− t� in the
time interval �0,��. In this process the probability of work W
being done is specified by the distribution PR�W�. The
Crooks theorem states that

PF�W�
PR�− W�

= e��W−�FTS�. �2�

Note that the Crooks theorem is a stronger statement than the
Jarzynski equality; indeed the latter can be obtained by inte-
grating the former �8�.

As has been discussed extensively in the past �7,9,10�,
both relations rely on rare events in which the work per-
formed deviates significantly from the average. Thus, the rel-
evance of Eq. �1� or Eq. �2� as a tool for measuring free-
energy differences is restricted to small systems, for which
the probability of sampling atypical events is non-negligible
even for experimentally reasonable realizations of the proto-
col �11�.

Since their discovery a decade ago, the fluctuation theo-
rems have been proven for both stochastic �8,9,12� and
Hamiltonian dynamics �13–15�. Although numerous proofs
have been given, the precise assumptions necessary for their
validity has been the subject of debate �16–18�. In large mea-
sure, this lack of clarity revolves around the importance of
local heating, to wit, that near the region of contact with the
test system the heat reservoir is itself driven out of equilib-
rium during the experiment. For example, proofs relying on
Markovian dynamics �8� assume that the test system obeys
detailed balance with an ideal heat reservoir, that is, the tran-
sition rate, wj,i

TS from configurations i to j of the test system,
satisfies

wj,i
TS exp�− �Ei� = wi,j

TS exp�− �Ej� , �3�

where Ei and Ej are energies of the configurations i and j of
the test system, respectively. Similarly, for Langevin dynam-
ics one typically assumes white noise satisfying the
fluctuation-dissipation relation �19�. Thus, these dynamics
implicitly assume that the heat reservoir is always in thermal
equilibrium �20�. While local heating may, in practice, be
small, it is nonetheless a fundamental issue which goes to the
heart of the validity of the fluctuation theorems �21�.

The aim of this paper is to elucidate the requirements for
the validity of the Crooks theorem and the Jarzynski equality
in the presence of local heating. While several works have
considered a restricted class of non-Markovian sources of
noise acting as the heat reservoir �22�, we take a different
approach. To this end, we consider the test system, on which
the driving is performed, to be a portion of a larger isolated
“combined system” consisting of the test system+heat reser-
voir, with no assumption made about the heat reservoir de-
grees of freedom. We first review results for classical Hamil-
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tonian dynamics and their limitations, and then present a new
proof for Markovian stochastic dynamics which requires less
stringent restrictions than their classical Hamiltonian
counterparts—specifically for classical Hamiltonian dynam-
ics the motion in phase space is incompressible while for
stochastic dynamics there is no such restriction. We show
that in order for the Crooks theorem to hold, it is sufficient
that the following three conditions are satisfied:

�1� The closed combined system �CS�, consisting of the
test system+heat reservoir, obeys time-reversal symmetric
dynamics when the external parameters �such as �� are con-
stant.

�2� When in thermal equilibrium, extensive properties of
the systems are additive, e.g., the free energy of the CS is the
sum of the free energies of the test system and the heat
reservoir: FCS=FTS+FB.

�3� The control parameters �such as �� directly couple
only to the test system �though their influence may surely be
felt in the entire CS�.

We note that when condition �2� does not hold, modified
relations may still be obtained; we comment on this in the
body of the paper. Since we make no assumptions about the
state of the heat reservoir, this demonstrates that local heat-
ing invalidates neither the Jarzynski equality nor the Crooks
theorem. This notwithstanding, local heating strongly im-
pacts on the statistics needed to accurately estimate free-
energy differences, and we address this issue numerically.

II. HAMILTONIAN DYNAMICS

In the following we present a proof of the Crooks theorem
for an isolated system obeying classical Hamiltonian dynam-
ics, along the lines of Ref. �14�. This will allow us to em-
phasize the differences between stochastic and classical
Hamiltonian dynamics. We wish to stress that for closed sys-
tems �such as the CS above� obeying classical Hamiltonian
dynamics, the Crooks theorem relies on the incompressibility
of trajectories in phase space �Liouville’s theorem� and mi-
croscopic time reversibility.

Consider the allowed phase-space manifolds �E and �E+W
of the CS with energies E and E+W, respectively �see Fig.
1�. As the system is driven using the forward protocol ��t�, a
subset �E of �E is mapped into a subset �E+W of �E+W—for
these trajectories an amount of work W is performed. Other
subsets of �E are mapped by the dynamics to other mani-
folds of different energies, for example, �E+W�, as indicated
in the figure. Denote the phase space volumes of �E and
�E+W by 	E and 	E+W and those of �E and �E+W by 
E and

E+W, respectively. The incompressibility of phase-space tra-
jectories guarantees that 	E=	E+W. Microscopic time-
reversal symmetry �condition �1�� implies that if the driving
protocol is reversed �23�, then �E+W

† will be precisely
mapped onto �E

† , where �E+W
† and �E

† are the time-reversed
images �i.e., all momenta reversed� of �E+W and �E, respec-
tively. These clearly all have the same volume in phase
space. In the special case when the protocol is a reversible
process, the entire manifold �E will be mapped onto the
entire manifold �E+W, where W is the energy added to the
system in the reversible process, with no change in entropy.

Since in equilibrium all states on a constant energy mani-
fold are equally probable, the probability of performing work
W in the forward protocol is given by PF�W�=	E /
E. Simi-
larly, for the reverse process PR�−W�=	E+W /
E+W. We ex-
pect that in the limit of a large heat reservoir E�W, PF�W�
and PR�−W� will not depend on E, which, together with 	E
=	E+W, gives

PF�W�/PR�− W� = 
E+W/
E = eSCS�E+W�−SCS�E�. �4�

Here we have identified 
E+W=eSCS�E+W� �and likewise for

E�, where SCS�E+W� is the entropy of the CS with energy
E+W. We may now couch this result in the standard form
�Eq. �2��: First expand to first order in W and use �FCS=W
−T�SCS. Next, use condition �2� such that FCS=FTS+FB, and
condition �3� such that FB is independent of � �and so
�FCS=�FTS�.

Note that for classical systems the condition FCS=FTS
+FB is rather strong. It implies that either a thermodynamic
limit of the test system is taken or that the interaction be-
tween the test system and the heat reservoir is weak. The
latter would imply negligible local heating while the former
would restrict the result to large test systems. If neither of
these cases holds, we cannot define the test system as a dis-
tinct object. In this case, as evident from the above proof, the
Crooks theorem still holds with �FTS replaced by �FCS im-
plying that one has to consider the free-energy difference of
the full combined system. Its value is expected to be depen-
dent on the interaction energy between the test system and
the heat reservoir. As we argue below, for stochastic systems

(a)

(b)

FIG. 1. Hamiltonian dynamics: A schematic illustration of the
mapping of sets of states, initially with energy E, under the protocol
��t�. �a� In an irreversible process, different amounts of work �e.g.,
W, W�, and W�� may be performed, meaning that states from the
manifold �E may be mapped to manifolds of different energies.
Note that due to the deterministic dynamics �E and �E� have no
common elements and depend explicitly on the protocol ��t�. �b�
For a reversible process, the manifold �E is mapped into the mani-
fold �E+W, where volumes of both the manifolds are the same.
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these restrictions are less severe and one can have strong
local heating even when FCS=FTS+FB.

III. STOCHASTIC DYNAMICS

Stochastic dynamics arise either due to incomplete knowl-
edge of some degrees of freedom of the system and the heat
reservoir or due to quantum effects �or both�. Although the
choice of an effective stochastic dynamics may be justified
from the underlying microscopic classical or quantum dy-
namics �24–26�, it is not obvious that the fluctuation theo-
rems are valid when only the effective stochastic dynamics is
provided. For example, noise of quantum origin �or in a
more general purely mathematical setting� is not captured by
Hamiltonian dynamics and thus invalidates the proof for the
Hamiltonian case. The central difference between the sto-
chastic case and that of classical Hamiltonian dynamics is
that here the evolution of a volume in phase space is not
incompressible. This means that a given initial state may
evolve under the dynamics into many final states. Employing
the same notation as in Sec. II, this difference is illustrated in
Fig. 2, which shows that the volume 	E is not, in general,
equal to 	E+W.

A. Crooks theorem

We now turn to the proof of the Crooks theorem for a
stochastic time-reversible dynamics. To understand irrevers-

ible and dissipative physics in stochastic settings, there are
various ways one can model a system �21�. We do in the
following fashion. We consider an isolated CS comprised of
a test system coupled to a reservoir. Per condition �1�, we
assume that the CS evolves through Markovian dynamics
obeying microscopic time reversibility. Formally, this means
that the transition rate wj,i �wi,j� from configuration i to j �j to
i� of the CS satisfies

wj,i = wi,j . �5�

This is just the statement of detailed balance for an isolated
system �24�. We stress that this does not imply Eq. �3�, that
is, the effective heat reservoir is neither Markovian nor in
quasiequilibrium, and the above condition is a much weaker
assumption than that made in Refs. �8,12�.

Let us now consider the “forward” process in the time
range �−� t��, where ��t�=�A for �−� ,0�, �B for �� ,��,
and varies in a fixed fashion in �0,��. At t=−� the CS is in
an equilibrium state A, and at t=� the CS comes to an
equilibrium state B. For a given protocol ��t� we indicate the
probability of a given trajectory Y�t� of the CS in the for-
ward process by the functional PF�Y�t� ,��t��. Y�t�
= �x�t� ,X�t�	 includes all the degrees of freedom of the CS,
that is those of the test system (x�t�) and of the heat reservoir

(X�t�). The functional PR�Ỹ�t� , �̃�t�� denotes the probability

of the corresponding time-reversed trajectory Ỹ�t�=Y�−t�
and time-reversed forcing protocol �̃�t�=��−t�, in which the
CS begins in state B at t=−� and ends in A at t=�. Equa-
tion �5� implies that

PF�Y�t�,��t�� = PR�Ỹ�t�,�̃�t�� �6�

for any trajectory. This simply says that the probability of
any trajectory in the configuration space of the combined
system is equal to the probability of its corresponding time-
reversed trajectory. Work performed is defined as the energy
difference between the two ends of the trajectory, i.e.,
�HCS�Y f ,� f�−HCS�Yi ,�i�� where HCS�Y�t� ,��t�� is the total
energy of the combined system at any time t, and subscripts
i and f denote the initial and final points of the trajectory. We
denote the functional WF�Y�t� ,��t�� as the work performed

along the forward trajectory, and WR�Ỹ�t� , �̃�t�� is that for
the corresponding time-reversed trajectory, with

WF�Y�t� ,��t��=−WR�Ỹ�t� , �̃�t��. The probability that an
amount of work W is performed in the forward and reverse
protocols, respectively, are given by

PF�W� =
 PA
eq�Y−��PF�Y,����WF − W�DY �7�

and

PR�W� =
 PB
eq�Ỹ��PR�Ỹ,�̃���WR − W�DỸ , �8�

where DY ��n=−�
� dYn denotes the integration over all trajec-

tories in the configuration space, PA
eq�Y−�� and PB

eq�Y�� are
the initial and final equilibrium distributions of the CS, and

(a)

(b)

FIG. 2. Stochastic dynamics: A schematic illustration of the
mapping of sets of states, initially with energy E, under the protocol
��t�. In this case, the dynamics do not map a given initial to a single
final state. Time reversibility only implies that a forward trajectory
has a corresponding time-reversed trajectory of equal statistical
weight. �a� In an irreversible process, different amounts of work
�e.g., W, W�, and W�� may be performed, meaning that states from
the manifold �E may be mapped to manifolds of different energies.
In this case, �E and �E� may have common elements. �b� For a
reversible process, the manifold �E is mapped into the manifold
�E+W. This notwithstanding, a given initial state may evolve along
many different trajectories Y�t�, as indicated.
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we have omitted the explicit trajectory dependence of

WF�Y ,�� and WR�Ỹ , �̃�.
The CS is in equilibrium for t= ��, and an amount of

work W is performed only during the interval �0,��. For t
= �� the CS is described by a microcanonical ensemble,
and the probability of any microstate Y = �x ,X	 is the inverse
of the total number of microstates e−SCS�t=���. Now we ex-
pand SCS�E+W� to first order in W and use �FCS=W
−T�SCS, where the inverse temperature T−1=�SCS�E� /�E.
According to condition �3�, � couples directly only to the test
system, while condition �2� implies that the free energy of
the CS is the sum of the free energies of the reservoir and
test system. Thus we have that

PA
eq�Y−��

PB
eq�Y��

= e��WF−�FTS�, �9�

where WF is the work performed along the forward path and
�FTS=FTS�B�−FTS�A� is the free-energy difference of the
test system at t=� and t=−�, that is, for the values �B and
�A �27�. Putting Eq. �6� and Eq. �9� in Eq. �7�, and using
WF=−WR, we get

PF�W� =
 e−��WR+�FTS�PB
eq�Y��PR�Ỹ,�̃���WR + W�DY

= e��W−�FTS�
 PB
eq�Y��PR�Ỹ,�̃���WR + W�DỸ

= e��W−�FTS�PR�− W� , �10�

which is obtained after comparing with Eq. �8�. This proves
the Crooks theorem for stochastic dynamics. Note that also
here we assume that PF�W� and PR�W� are independent of E
in the limit of large heat reservoir. Finally, where conditions
�2� and �3� do not apply similar considerations to those dis-
cussed for Hamiltonian dynamics hold.

Note that the conditions on the validity of the Crooks
theorem are weaker here than for Hamiltonian dynamics. For
Hamiltonian dynamics, Liouville’s theorem and condition �1�
imply time reversibility in the sense that each microstate in
the initial manifold maps under the action of ��t� onto a
single final microstate, and under the reverse protocol the
final microstate, with all momenta reversed, in turn maps
back to the original microstate with all momenta reversed. In
the stochastic case the constraint is weaker in the sense that
an initial microstate may end up in any one of many final
microstates; all that is required for the proof is that the
weights of path connecting states in the forward and reverse
directions are equal.

In contrast to classical Hamiltonian dynamics, for sto-
chastic dynamics there is no connection between local heat-
ing and the interactions between the test system and the heat
reservoir. Indeed, the energy function of the stochastic sys-
tem may contain no interaction term between the test system
and the heat reservoir. However, this does not mean that
there is no heat transfer, and consequently, local heating can
occur. This is illustrated in the numerical example of Sec. III.

B. Jarzynski equality

Although the Jarzynski equality can be derived by direct
integration of the Crooks theorem, it is instructive to present
a proof for stochastic dynamics in the spirit of the previous
section. We discretize the process and consider a general
protocol ��0 ,�1 , . . . ,�n�

	, where �k is the value of � for the
kth update interval. The process consists of changing the
value of � �while leaving Y = �x ,X	 unchanged�, updating the
CS, changing � again, etc. Denoting the values of the de-
grees of freedom of the CS at step k by Yk��xk ,Xk�, this
process is specified by the sequence of transitions �Y0 ,�0�
→ �Y0 ,�1�→ �Y1 ,�1�→ �Y1 ,�2�. . .. The transition probability
matrix between the states �Yk−1 ,�k� and �Yk ,�k�, which has
an implicit dependence on time through the changing param-
eter �, is denoted by w̄k,k−1. Condition �1�, with the Markov-
ian dynamics for the entire CS, implies that


 w̄k+1,kPCS
eq �Yk,��dYk = PCS

eq �Yk+1,�� . �11�

�Condition �1� guarantees that dynamics for a given value of
� only connects microstates in the equilibrium ensemble.�

Conditions �2� and �3� imply that the work at time step k
is defined as �Wk=H�xk ,�k+1�−H�xk ,�k�, where H�x ,�� is
the energy of the test system in microstate x at parameter
value �. The total work performed in the process is thus
given by W=�k=1

n� �Wk. Condition �2� implies that

PTS
eq�x,�� = exp�− �H�x,���/Z , �12�

where Z=dx exp�−�H�x ,��� is the partition function of the
test system. From Eqs. �11� and �12�, we have


 e−��Wkw̄k+1,kPCS
eq �Yk�dYk =

Zk+1

Zk
PCS

eq �Yk+1� ,

where Zk is defined in Eq. �12� with �=�k. Using this re-
peatedly in the relation

�e−�W� =
 PCS
eq �Y0,�0��

k=0

n�

e−��Wkw̄k+1,kdYk,

we readily obtain Eq. �1� by identifying Fk=−�−1 ln�Zk�, the
free energy of the test system for �=�k.

IV. NUMERICAL MODEL

In the preceding sections we have shown that local heat-
ing does not invalidate either the Crooks theorem or the
Jarzynski equality. This notwithstanding, local heating has a
crucial effect on the convergence of the results. We illustrate
these results using a simple stochastic model. We first show
numerically the validity of both the Jarzynski equality and
the Crooks theorem for stochastic dynamics respecting Eq.
�5�. This allows us to study the effect of local heating on the
typical number of experimental runs needed to estimate the
average in Eq. �1�. It is shown that the larger the local heat-
ing, the greater the number of runs needed.

Consider a one-dimensional �28� lattice of L+1 sites, with
sites labeled i=0, . . . ,L; this is our CS. The test system is
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placed at site i=0, and the heat reservoir occupies sites 1
� i�L, as indicated in Fig. 3. At each site we define a real
and positive energy variable �i. For the test system we as-
sume, for simplicity, a single degree of freedom denoted by
x, which takes values x�0. The energy of the test system is
chosen to have the simple form �0=H�x ,��=�x, where � is
the external forcing parameter. �Similar results were obtained
for different energy functions, such as �0=H�x ,��=�x2.�

The parameter � is updated according to a set determin-
istic protocol ��t� in the time interval �0,��. During this
time, the CS evolves with random sequential stochastic dy-
namics, with each site 0� iL in the CS interacting with an
arbitrary rate r with the site to its right by stochastically
redistributing their total energy as follows:

�i� = q��i + �i+1� and �i+1� = �1 − q���i + �i+1� . �13�

Here 0�q�1 is drawn from a uniform distribution and the
prime denotes the values after redistribution �29�. The update
rule for i=0 �the test system� and the role of parameter � in
the dynamics are explained in more detail as follows. Since
the energy of the test system �0=�x, the maximum possible
value of x in the next update step is xmax= ��0+�1� /�. Now
we generate a random number xr, which lies uniformly be-
tween 0 and xmax and the update rules for the sites 0 and 1
are �0�=�xr and �1�= ��0+�1−�xr�, where �0� and �1� are the
energies of the respective sites after redistribution. In this
way we ensure that the transition to any of the states, arising
due to the energy exchange, are equally likely. One can eas-
ily check that the updating of sites i=0 and i=1 agrees with
Eq. �13� for this particular model. In accordance with stan-
dard definitions �9� the work done on the test system is given
by

W = 

0

� �H

��

d�

dt
dt = 


0

�

x�t�
d�

dt
dt . �14�

Large r compared to d� /dt, the rate of change of the external
parameter, means a quickly thermalizing reservoir; in the
limit r→� for any finite d� /dt, we expect the reservoir to
lose all memory and become Markovian.

When ��t�=�0=const, we update the test system and the
reservoir by repeatedly using the dynamics in Eq. �13�.
Clearly the total energy of the CS is conserved, and the dy-
namics satisfy detailed balance with respect to a measure that
is uniform on a constant energy surface, as required in a
microcanonical ensemble. It is straightforward to show that
in the thermodynamic limit L→�, the equilibrium energy
distribution of any site i=0, . . .L takes the form

P��i� = �e−��i, �15�

where �−1=�i=0
L �i / �L+1�. The distribution of the CS is a

product measure PCS��� j	�=�i�e−��i. This allows us to cal-
culate the partition function of the test system for a fixed
value of �: Z���=0

�e−��xdx= ����−1 with the free-energy
given by F���=−�−1 ln Z.

As the test system is driven, there is local heating in the
region of its contact with the reservoir �30�, with the conse-
quence that the energy distributions of the reservoir sites
near to the test system �e.g., i=1,2 ,3, etc.� deviate signifi-
cantly from the equilibrium distribution as given in Eq. �15�.
We study this numerically by employing the following driv-
ing protocol ��t�: Starting at ��0�=�0 we increase the forc-
ing parameter to ������0+�� at intervals �� in n��� /��
discrete steps of size ����� /n�. Between these updates the
dynamics specified in Eq. �13� are carried out using standard
Monte Carlo methods. By discretizing Eq. �14�, the work
performed due to changing the parameter from �k to �k
+�� at the kth update step is defined as �Wk=H�xk ,�k
+���−H�xk ,�k�, where xk is the test system degree of free-
dom. The total work performed is W=�k=1

n� �Wk.
For fixed ��, a reversible process occurs in the limit

��t+�t�−��t�
r�t →0. For this to occur, the limit n�→� must be

taken first, followed by either taking r→� or �→�. All
other protocols, in particular, those with finite n�, are irre-
versible. In the following we compare systems by putting r
=1 �which sets the time scale� and varying the time interval
�.

The effect of local heating on the single-site energy dis-
tribution is shown in Fig. 4, where we plot the �integrated�
distributions P����=�

�P����d�� for several sites for two val-
ues of � and with the same protocol for ��t�. We see that far
from the test system �i�1� the reservoir is Boltzmann dis-
tributed �as in Eq. �15��, but there is significant deviation
near to the point of contact with the test system. As expected,
for large � this effect decreases. In a sense, local heating is a
measure of the non-Markovian nature of the reservoir as ex-
perienced by the test system. This notwithstanding, Fig. 4
demonstrates that even in the presence of local heating, the
Crooks theorem is clearly satisfied. The validity of the
Crooks theorem automatically implies that the Jarzynski
equality also holds.

One of the chief uses of the Crooks theorem and Jarzynski
equality is to experimentally measure the �relative� free en-
ergy of a test system. For this purpose, local heating is of
central importance, since it has a pronounced effect on the
number of experimental runs which must be carried out to
accurately determine the free-energy difference �F=FB
−FA �31�. Our discussion will focus on the Jarzynski equal-
ity, but similar conclusions hold for the Crooks theorem. In
an experiment, the quantity e−�W is measured once per run.
The experimental average over NR runs is thus

e−�W =
1

NR
�
l=1

NR

e−�Wl,

where Wl is the work performed in the lth experimental run.
Assuming the validity of the Jarzynski equality, this gives an

FIG. 3. Schematic diagram of the CS. The test system occupies
site i=0, and the sites of the heat reservoir are labeled by i
=1,2 ,3 , . . . ,L, where L is very large. Interactions are between
neighboring sites.
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estimate of the free-energy difference measured from the ex-
periment as follows:

��FM = − ln e−�W.

As we show, the more pronounced the local heating, the
larger NR must be in order for �FM to accurately estimate the
actual free-energy difference. To see this, note that the scale
of the estimated error of the average of X�e−��W−�F� is set
by the width �X���X2�− �X�2 of the probability distribution
P�X� �32�. The central limit theorem states that for NR runs,
the error in the estimate of �X� scales as �XNR

−1/2 for large NR.
It is straightforward to show that the error in the estimate of
�F scales in the same fashion. Therefore, the smaller �X, the
fewer the runs needed to obtain an accurate estimate of �F.
This is especially relevant when the experimental protocol
drives the system in a highly irreversible fashion.

Figure 5 shows the dependence of �X on � for two values
of n�. As is clearly seen in the data, the longer the time of the
experiment, the smaller �X. In the absence of local heating,
such as occurs in the �→� limit, �X achieves a parameter-

dependent constant value, as seen in Fig. 5. We note that
since n� is finite, the process is irreversible even for infinitely
long experiments, with the consequence that �X does not
reach zero. However, �X diminishes with increasing n�, tend-
ing to zero in the reversible limit discussed above. Figure 5
shows the deviation �FM −�F of the estimated free-energy
difference from the actual value as a function of the expected
scaling variable NR /�X

2 . Once again, we see that the larger
the local heating, the more experimental runs are needed to
evaluate the free energy. Note that by considering a system
with maximal local heating, an upper bound on the number
of realizations can be obtained. This can be realized by mak-
ing sudden changes in the test system, thus effectively dis-
connecting the heat reservoir after an initial equilibrium dis-
tribution has been attained.
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FIG. 4. �Color online� Top panel: The integrated final �t=��
energy distributions, P���� for several sites, i for a short ��=50�
and long ��=5000� experimental time. Bottom panel: The solid line
is exp��W−��F�, where �F=�−1 ln���0+��� /��, obtained ana-
lytically. We take r=1 in an arbitrary unit and measure the time
with respect to it. Results are obtained for L=100, T=1, �0=1,
��=1, and n�=10, and by averaging over 105 realizations.

FIG. 5. �Color online� Top panel: �X as a function of �, and
NR=104. Bottom panel: The fractional error in the measured free-
energy difference �FM, vs NR /�X

2 , where averaging is done over
103 realizations for each value of NR /�X

2 , and the straight line has
the slope −0.5. Results are for L=100, T=4, �0=2, and ��=1.
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